Warning: Undefined array key "बहिः गच्छतु" in /home/httpd/vhosts/puntogroup.ru/httpdocs/collections/plint/index.php(1) : eval()'d code on line 136

Warning: Undefined array key "aksi" in /home/httpd/vhosts/puntogroup.ru/httpdocs/collections/plint/index.php(1) : eval()'d code on line 140

Warning: Undefined array key "नामपत्र" in /home/httpd/vhosts/puntogroup.ru/httpdocs/collections/plint/index.php(1) : eval()'d code on line 159

Warning: Undefined array key "नामपत्र" in /home/httpd/vhosts/puntogroup.ru/httpdocs/collections/plint/index.php(1) : eval()'d code on line 181
Current File : //usr/lib64/python2.6/lib-dynload/mathmodule.so
ELF>0 @h`@8@�J�J �J�J �J �� �J�J �J �����$$P�td`C`C`CddQ�tdGNUKF��Tyk"�F�B�0�E�� @	EHJ�s��|CE���qX������	hm�b&L�IH�1+U + "<XrtHB�Z���R��A"�
`����8�G���M��}]S2W����^��7�?!r�p_ �`_ 
�`_ 	h�@__gmon_start___init_fini__cxa_finalize_Jv_RegisterClassesinitmathPy_InitModule4_64PyFloat_FromDoublePyModule_AddObjectPyObject_CallMethodPyFloat_AsDoublePyErr_Occurred__errno_locationPyExc_ValueErrorPyErr_SetFromErrnoPyExc_OverflowErrorPyErr_SetString__isnan__isinf__finitesqrtlog1pfloorfabsceilatanhatanasinhasinacoshacosPyArg_UnpackTuplecopysignfmodpowmodfPy_BuildValue_PyLong_AsScaledDoublelog10PyNumber_DividelogPyArg_ParseTuplePyLong_AsLongPyErr_ExceptionMatchesPyErr_ClearldexpPyExc_TypeErrorPyBool_FromLonghypotPyObject_GetIterPyIter_NextPyMem_FreePyExc_MemoryErrorPyMem_ReallocPyMem_MallocmemcpyfrexpPyFloat_TypePyType_IsSubtypePyInt_AsLongPyInt_FromLongPyNumber_Multiplyatan2libpthread.so.0libc.so.6_edata__bss_start_endGLIBC_2.2.5� ui	�ui	�J �J �Z �A�Z  &�Z  O [ �A[ &[ `O  [ �A([ �%8[ �O @[ �AH[ �%X[ P `[ �Ah[ �%x[ `P �[ 0A�[ �'�[ �P �[ �A�[ �%�[  Q �[ �A�[ `%�[ �Q �[ 'A�[ �'�[ �Q \ �A\ @%\  R  \ �A(\  %8\ `R @\ �AH\ �!X\ �R `\ SAh\ %x\ �R �\ �A�\ �$�\  S �\ �A�\ p=�\ `S �\ �A�\ �$�\ �S �\ 6A�\ (�\  T ] �A] �<] �T  ] �A(] �68] @U @] WAH] �4X] �U `] �Ah] p4x] V �] �A�]  4�] `V �] QA�]  2�] �V �] JA�] @0�] �V �] �A�] �$�] `W ^ DA^ p/^ �W  ^ B(^ �-8^  X @^ ;AH^ �)X^ �X `^ Bh^ �!x^ �X �^ �A�^ �$�^  Y �^ �A�^ `$�^ `Y �^ B�^ @$�^ �Y �^ �A�^  $�^ �Y _ �A_ $_  Z  _ B(_ �!8_ `Z XL `L hL 
pL xL �L �L �L �L �L �L �L �L �L �L !�L "�L #�L &�L .�L 2�L 4M 6M 7M 8M : M @(M CHM PM XM `M hM pM 	xM �M 
�M �M �M �M �M �M �M �M �M �M  �M #�M $�M %�M '�M (N )N *N +N , N -(N /0N 08N 1@N 3HN 5PN 9XN ;`N <hN =pN >xN ?�N A�N B�N DH����Z�%#H���5�/ �%�/ @�%�/ h����%�/ h�����%�/ h����%�/ h����%�/ h����%�/ h����%�/ h����%z/ h�p����%r/ h�`����%j/ h	�P����%b/ h
�@����%Z/ h�0����%R/ h� ����%J/ h
�����%B/ h�����%:/ h���%2/ h����%*/ h�����%"/ h����%/ h����%/ h����%
/ h����%/ h����%�. h�p����%�. h�`����%�. h�P����%�. h�@����%�. h�0����%�. h� ����%�. h�����%�. h�����%�. h���%�. h ����%�. h!�����%�. h"����%�. h#����%�. h$����%�. h%����%�. h&����%z. h'�p����%r. h(�`����%j. h)�P���H��H�E, H��t��H����������U�=? H��ATSubH�=p, tH�=O* �:���H�3* L�%$* H��> L)�H��H��H9�s DH��H��> A��H��> H9�r���> [A\��f�H�=�) UH��tH��+ H��tH�=�) ��@������SH��- H�5�9 H�=�1�A�����H��H��tE��!�(���H�5�H��H���F����n!�	���H��H�5�H��[�&���fD[�fffff.�H��H�5p1�1��-���ffff.�H��H�����f.!t�Y!H�����f�z��$���H���$t�1�H���H��H���d���f.� t�Y� H���I���f�z��$�d���H���$t�1�H���H���D$�1������!tj��"tH�* H�8����H���@�� 0��L$fT�f.L zr�H�Y* H�5pH�8�2����H����H��) H�56H�8�
�����H�\$�H�l$�H��L�d$�H��(���c���f.��$���k����I���$���D$�����t<�$�����uKA�$!�D$�����t<1�H�\$H�l$L�d$ H��(Ð�D$�����t9�$�����u;A�$�D$H�\$H�l$L�d$ H��(���DA�$��t��fD�����"A�$�q�����*������H��f��c�������DH��H�5�( 1�����ffffff.�H��H�5�( 1����ffffff.�H��H�5( 1����ffffff.�H��H�5�( ��l���fff.�H��H�5�( 1��O���ffffff.�H��H�5�' ��,���fff.�H��H�5�' 1�����ffffff.�H��H�5>( 1����ffffff.�H��H�5�' �����fff.�H��H�5n' ����fff.�H��H�5�' 1����ffffff.�H��H�5&' 1��o���ffffff.�H��H�5F' 1��O���ffffff.�H��H�5>' 1��/���ffffff.�H��H�5�& 1�����ffffff.�H��H�5�& 1����ffffff.�H��H�5' 1�����ffffff.�H��H�5�& 1����ffffff.�U1��SH��H�ֺH��8L�L$ L�D$(�I�����u
H��81�[]�@H�|$(����H�|$ �D$�����L$�D$�"f.�z���L$f.�������H���L$�D$���D$�����tC�D$������ut�D$������ue�E!�D$�#�����tV�E���f.��D$�����tQ�D$������t"�D$������t�E"�f.��E�D$����H��8[]���U��t��v���@����f.�����H�������f����ff.�H��H�5�$ H�F�Z���f.�H��H�6H�5�:���f.�SH��H�51���H��@L�L$0L�D$8�v�����u1�H��@[�f.�H�|$8����H�|$0�D$����L$�D$ �Jf.�z�<�L$ f.��&�D$ �{�����t�D$�l�����������H���D$ �D$����u����\$(�L$(f.�����f(��$�������$tR�D$������$���D$ ������$uv�!f(��$�����$t���@���u�f(����H��@[��L$ �D$����f(��e���fD�D$����������������H��f��h������DSH��H�5P1���H��PL�L$@L�D$H���u1�H��P[�f.�H�|$H�6���H�|$@�D$(�&����L$(�D$0�zf.�z�<�L$0f.��&�D$(������D$0���������H���L$0�D$(����f(��L$�b���L$�<f(��L$����L$�f(��L$�(���L$��D$(f.�����	�����!��E��K��H���D$(���u3�D$0�x��td�
|�D$(f.�zt7�L$0�/fD�L$0�D$(��
S�CfT�fU�fV�f(���H��P[���D$(�U�����D$0�B��fW�t��L$(�<��fT�f(�f.�zt�fW��L$0f.�v
f.��L���f.\$0��f.����D$0�
�fW��D$(f.��K����E���@�!f(��L$�������L$�����~�������f.����H���`���f�����D$0�]�1�1Ʌ�uefW��D$0f.�v5���L$(u�CfT����������i������@�D$0f.����z�
������L$0��fT���D$�D$����u����\$8�L$8f.�zt�\$�L$��f(����f.
Pu)z'���+������P����L$(fT
��=����1�����f(�����H��(H����f.��D$���D$�%��u�D$���ur�D$���u;�^��H�|$�D$���L$H�=���!�H��(�@�L$H�=��f(���H��(���D$H�=��L$�fT����H��(�fD�:������H��1�H��u��&���fDSH��H��0H�G���t[H�t$,��f.�vW���*L$,�Y
��D$���$���$�Y��XD$�.�H��0[��1���H��0[�z�H� H�5�H�8�x�1���@H��H��H�5�J���f.�f(�H��(�$�~����$tEfW�f.�w{�D$�$���!�D$�$f.�z@u>�
"f(�H��(Ðf(��$������$u�f.
�w��j��!�
�H��(f(��f(�H��(���H�\$�H�l$�H��L�d$�H��(H�5�L�D$1�I���H�$�2���u1�H��H�l$H�\$L�d$ H��(�DH�|$H��H�5�����H��H��t�H�<$H��t�H�zH�5���H��H��t\H��H����I��H�H��H��H�t/H�EL��H��H��H�E�k���H�EH��P0�\����H�CH��P0��@H�H��H��H��/���H�CH��1�P0� ���fff.�f(�H��(�$�����$tEfW�f.�w{�D$�$����!�D$�$f.�z@u>�
Bf(�H��(Ðf(��$������$u�f.
�w����!�
�H��(f(��f(�H��(���UH��H�5#1�SH��(H�L$H�T$�/�����H�|$H�GH����������H�o�L$f.
gztf(��$�����$u,�$�����$f(���H��([]��H�������f(��/fTWfT?fV�f(��$�}��"�$f(��$�$����$t�H��(1�[]����H���H���)����A�H������H�� H�8����t�H�D$H�hH��H��?H��H��#����fDH���}fT
����f�������H���D$�5�f(��$�G����$t.�"�!���H�� H�5"H�8���1����������������H��H���4�f.�t��H��Hc����f�z��$�4�H���$t�1�H���H��H�����f.Dt��H��Hc���f�z��$���H���$t�1�H���SH��H�5�1���H��0L�L$ L�D$(�����u1�H��0[�f.�H�|$(�V�H�|$ �D$�F��L$�D$��
f.�z�$�L$f.���D$��������D$����u\���H���L$�D$���D$�:���tf�D$�+���u?�D$����u0�!��D�L$�Z
fT���H��0[���D$�g�H��0[Ð�D$����ti�D$����t��D$����t��"�S�L$��fT������@���f��+�H�������f������3���l���fD�D$�����S����N���AWH��AVAUATUS1�H���u�H��H����fW�L�l$p�XA� L��E1��\$h�\$`H��H�T$�\$ f)T$0���H��H��H�T$�\$ f(T$0�H��H�T$�\$ f)T$0�!��D$XH�H��H�H��H�T$f(T$0�\$ ��H�T$�\$ f)T$0��H��H�T$�\$ f(T$0��1�M���L$X��fD��f(�f(�fT�fT�f.�v�L$f(��D$f(��X���$���$��\���$���$��\���$x��$xf.�ztH��$xH��H��H����$�L9��a���I��f.�z�����f(�H�T$�L$@f)T$0�\$ ����H�T$�L$@f(T$0�\$ ���D$X�x���H�T$f(T$0�\$ ���D$XH�T$f)T$0�\$ �C���H�T$f(T$0�\$ t�D$h�XD$X�D$h�D$`E1��XD$X�D$`����f�H�CH��P0�\$ H�T$f(T$0�)����K�H��H�T$�\$ �1�H�EH��H��H�EtjL9�tH����H�ĘH��[]A\A]A^A_�I9�~L�4��B2L�s�F���M�L9�|:H�' H�5�1�H�8H�T$��H�T$�H�EH��H�T$�P0H�T$�H��������I9�w�L9���J�4�H��H�T$�L$@f)T$0�\$ ��H��I��H�T$�L$@f(T$0�\$ �d���L�4�L���=����D$`f.��D�>M��HDŽ$��	I��f(�J��H��$�M������$�I���B�f(��X���$���$��\���$���$��\���$x��$xf.�u{�M������$xf.�v	fB.L�w��$xf.�v[�BD�f.�vN��$x��$��X���$��X�f(��\���$���$�f.�uz	��$���$�H�T$��H�T$H������D$hH�T$����H�T$��H�� H�5�1�H�8��H�T$�j���J�<�H�T$�L$@f)T$0�\$ ��H��I��H�T$�����L�4�L��H��L�����L$@f(T$0�\$ ����H�� H�5�1�H�8�u�H�T$����D$`H�T$���H�T$H������fffff.�H��(H����f.f(���f(��$�����$t+�D$1�f(�H�=���|�H��(��f(������$u�f.
�u{�f�f(�H�|$�r��t$f(����x����$�@�H��1�H���$u��Z���fff.�AVAUATUSH��H�~H�5B H9���������H���l�H���I���H�����,�H��H����M����A��-�M��tcH�EH��H��H�E��I��L��M9�|YL�����H��H��t2H��H����I��H�H��H��H�u�H�CH��P0M��u�fDH�EH��H��H�E��1�[H��]A\A]A^�D�C�n��f.Cz�
���H��
 H�5�1�H�8�9���H�EH��P0�C�������H��u��H��
 H�5�1�H�8��[H��]A\A]A^�H�EH��1�P0�b���ff.�H���D$f(��$��������D$�����uq�D$������ur�$������u�T$f.~��
���$fT�fV
�f.
Iuwzu�L$fT�f(��
D�HH����$�V����tb�j�$fT�fV
if.
�uozm�
�T$fT�fU�fV�멐�
��T$fT�fU�fV��@���L$fT�fT
�fV��a���f��
��T$fT�fU�fV��9�����$�D$H���<��������������UH��SH��H��	 H���tH��	 H����H�H���u�H��[��H���o��H���mathpie__trunc__math domain errormath range errorcopysignatan2fmodpow(dd)log10logdO:ldexphypotintermediate overflow in fsummath.fsum partials-inf + inf in fsum(di)acosacoshasinasinhatanatanhceildegreesfabsfactorialfloorfrexpisinfisnanlog1pmodfradianssqrttruncExpected an int or long as second argument to ldexp.factorial() only accepts integral valuesfactorial() not defined for negative values-DT�!	@iW�
�@�9�R�Fߑ?��cܥL@�?@.@���-DT�!�?�!3|�@-DT�!�?���������?;d+���� ���@����������������@��X��p�� ��@��`�����������0�H �`@�x`��������������p�(��@��X���p��p���0�(��P�x�������`�@�P@������������zRx���rA�d
KA<x��T���MD ^
N\t���MD ^
N\�����D o
E
I$�`��M��I0�x
B~
J�X���`��h��$p��<x��T���l������������������������������,���D���\���t���4�����A�H�OPW
CAE
AAH�@��H�,�P��A�ZPY
AK#
AD,$���A�Z`Y
AK�
AI$T���D0
E_
Ii
G,|���A�G@^
AIK
AD���$���H0V
Bx
HH$���$V0���D
F$���H0V
Bx
HH4<��A�M�D@�
AAHd
CAHt��MD [
Q\��MD [
Q\4�@��A�Z@Y
AK�
ADU
ABL����B�E�B �B(�A0�A8�I��
8D0A(B BBBA<���D0T
HL\H�B�B�B �A(�A0��
(D BBBFq
(D BBBA���D �
D������������������J ��h
�@���o�	�
*0M �x
x	���o����o�o*���oj�J �������&6FVfv��������&6FVfv��������  & This module is always available.  It provides access to the
mathematical functions defined by the C standard.acos(x)

Return the arc cosine (measured in radians) of x.acosh(x)

Return the hyperbolic arc cosine (measured in radians) of x.asin(x)

Return the arc sine (measured in radians) of x.asinh(x)

Return the hyperbolic arc sine (measured in radians) of x.atan(x)

Return the arc tangent (measured in radians) of x.atan2(y, x)

Return the arc tangent (measured in radians) of y/x.
Unlike atan(y/x), the signs of both x and y are considered.atanh(x)

Return the hyperbolic arc tangent (measured in radians) of x.ceil(x)

Return the ceiling of x as a float.
This is the smallest integral value >= x.copysign(x, y)

Return x with the sign of y.cos(x)

Return the cosine of x (measured in radians).cosh(x)

Return the hyperbolic cosine of x.degrees(x)

Convert angle x from radians to degrees.exp(x)

Return e raised to the power of x.fabs(x)

Return the absolute value of the float x.factorial(x) -> Integral

Find x!. Raise a ValueError if x is negative or non-integral.floor(x)

Return the floor of x as a float.
This is the largest integral value <= x.fmod(x, y)

Return fmod(x, y), according to platform C.  x % y may differ.frexp(x)

Return the mantissa and exponent of x, as pair (m, e).
m is a float and e is an int, such that x = m * 2.**e.
If x is 0, m and e are both 0.  Else 0.5 <= abs(m) < 1.0.fsum(iterable)

Return an accurate floating point sum of values in the iterable.
Assumes IEEE-754 floating point arithmetic.hypot(x, y)

Return the Euclidean distance, sqrt(x*x + y*y).isinf(x) -> bool

Check if float x is infinite (positive or negative).isnan(x) -> bool

Check if float x is not a number (NaN).ldexp(x, i)

Return x * (2**i).log(x[, base])

Return the logarithm of x to the given base.
If the base not specified, returns the natural logarithm (base e) of x.log1p(x)

Return the natural logarithm of 1+x (base e).
The result is computed in a way which is accurate for x near zero.log10(x)

Return the base 10 logarithm of x.modf(x)

Return the fractional and integer parts of x.  Both results carry the sign
of x and are floats.pow(x, y)

Return x**y (x to the power of y).radians(x)

Convert angle x from degrees to radians.sin(x)

Return the sine of x (measured in radians).sinh(x)

Return the hyperbolic sine of x.sqrt(x)

Return the square root of x.tan(x)

Return the tangent of x (measured in radians).tanh(x)

Return the hyperbolic tangent of x.trunc(x:Real) -> Integral

Truncates x to the nearest Integral toward 0. Uses the __trunc__ magic method.�A & O �A&`O �A�%�O �A�%P �A�%`P 0A�'�P �A�% Q �A`%�Q 'A�'�Q �A@% R �A %`R �A�!�R SA%�R �A�$ S �Ap=`S �A�$�S 6A( T �A�<�T �A�6@U WA�4�U �Ap4V �A 4`V QA 2�V JA@0�V �A�$`W DAp/�W B�- X ;A�)�X B�!�X �A�$ Y �A`$`Y B@$�Y �A $�Y �A$ Z B�!`Z mathmodule.so.debug��5�.data.rodata.shstrtab.dynamic.note.gnu.build-id.eh_frame.gnu.hash.fini.gnu_debuglink.dynsym.gnu.version.rela.dyn.data.rel.ro.gnu.version_r.jcr.eh_frame_hdr.dynstr.ctors.dtors.bss.init.rela.plt.got.plt.got.text"��$?���o��<^���		*f���o**�����o��@s

x�xx�
�hh�����0 0 � I�@�@�@�@p�`C`Cd5�D�D���J �J��J �J��J �J}�J �J�J �J��XL XL��0M 0Mh�N �N� �`_ `_O`_x_�